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Room temperature luminescence in fluid solutions froin d
transition metal complexes is exceedingly rare. Only a few
examples have been reported to date, including,8g€I}
Cp*TaCkX (X = CI~, RC%;"),2 and very recently, Ta(N-2,6-
IPr,CsH3)ClaL > (L = ether, amine}. In these series, the emitting

state has been attributed to a ligand to metal charge transfer A

(LMCT) from the cyclopentadienyl ligand® (M — Cp*]) or
imido ligand M < NAr]). In each case, emission energies
are high ¢~16000-19000 cntl) and rate constants for excited
state decay range from approximately®10 10’ s*1. These
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Scheme 1 Pertinent Orbital Interactions in the Lowest
Energy Absorptions for Compounds-8
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data compare favorably with those reported for group 7 and 8 resylts in a lowering of the MLCT absorption maximum by only

polypyridyl complexes [Re(L)(CQX] T 478 and [MLX2]2" (M
= Ru, Os%811 | = polypyridyl ligand, X = Lewis base).

1500 cntl5
The intensity of these transitions are suggestive of LaPorte

We have prepared and examined a series of group 5 imidoforhidden ligand field transitions, with the complication that

compounds of the form M(NR)@lL, (M = Ta, Nb; R= phenyl,
2,6-diisopropylphenylt-butyl, 1-adamantyl; b = py,, 1,2-
dimethoxyethané}213to demonstrate the large alkyl effect on

there are (formally) no d electrod8! The ligand field model
predicts (assuming a higher local, symmetry at the metal)
that the B (dyy) orbital is lowest in energy, Scheme 1. This is

electronic structure. The geometry of these species (Schemeyye to significant compression along thexis (Ta-N(imido)

1) as determined byH and 13C NMR spectra at room
temperature (CBCly) is clearly octahedral with a meridonal
arrangement of the chloride ligands, alis to the imido

bond distances are typically1.75 A in octahedral environ-
ments)t* There is a significant covalentinteraction between
e (dx0y;) and Np,y that stabilizes the high oxidation state of

ligand*214 The isostructural nature of these compounds allows the metal in these complexes. The HOMOUMO absorption
a direct comparison of their spectroscopic and excited stateshould be orbitally allowed (Scheme 1), but the low intensity

properties.
The lowest energy absorption maxima fior8 in dichloro-

(200 M~Icm™ > ¢ > 20 M~1cm™1) of these transitions is
consistent with a spin-forbidden absorpticiinby — mmn),

ethane solution at room temperature vary dramatically over a which gains intensity through spirorbit coupling. The larger

range of about 10 000 cth (Table 1). We observe an increase
of ~2800 cnT!in the lowest energy absorption upon changing
the metal from niobium to tantalum. An increase 06000

shift in the transition energy upon variation of the imido
substituent compared to that observed upon variation of the
metal is consistent with a highly covalent bonding picture, since

cm! is apparent upon changing the imido substituent from 2,6- the energy of Np, varies significantly as R changes from alkyl

iPr,-CgHs (5, aryl) to adamantyl, alkyl). It is profound that

to aryl. This is due to mixing of the aryt system with the

the absorption energy varies more dramatically as R changesy —N x bond, Scheme 1. The MN z-bonding orbital is split

between Npyand Md,,, ys Scheme 1. Making a similar change,
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7 system is significant. This lowers the HOMQUMO energy
separation and the lowest energy absorption.

Excitation into the lowest energifnby — mwn) absorption
in compoundsl—8 results in generation of a relatively long-

lived excited state which is luminescent at room temperature
in fluid solution. In each case the absorption and emission bands
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Table 1. Spectroscopic Data for M(NR)gLI,?

compound Eabs cM 1 (e, (M cm)™) Eem cm 1 7.2 ns Den’ Kar, 1P 571 k, 10* st
Ta(NAda)Ckdme (1) 28 400 (160) 18 700 15 100 0.20 0.053 1.3
Ta(NBu)Clpy: (2) 26 800 (144) 17 400 9350 0.096 0.097 1.0
Ta(NAda)Chpy: (3) 26 500 (180) 17 200 6 000 0.095 0.15 1.6
Ta(NPh)Cidme @) 23800 (112) 15 900 200 0.0041 5.0 2.1
Ta(NAr)Cldme 6) 22 400 (128) 14 700 60 0.0012 17 2.0
Ta(NANClpy: (6) 20 900 (99) 14 200 50 0.0008 20 1.6
Nb(NAda)Ckdme () 25 800 (76) 15 400 3000 0.010 0.33 0.33
Nb(NAr)Clsdme @) 19 000 (34) (11 500)

a All data obtained in optically dilute dichloroethane solutions. Emission data were collected on a Spex Fluorolog emission spectrophotometer
and were corrected for spectrometer respoh8etermined using 440 nm excitation from a PRA LN1000/LN107 nitrogen/dye laser combination.
¢ Obtained using an aerated acetonitrile solution of Ru@pyjPem = 0.012) as an actinometetCalculated from the observesEem = (Eem) —
Eem(s), assuming the sam&Ee, for 7 and8. This emission would be beyond the limit of detection of our spectrometer.

17— , - T , acceptor mode iselatively invariant in this series, despite the
AN significant difference in the Stokes’ shift calculated from the
16 - ] electronic spectra.
.4 There is a large decrease knfrom tantalum to niobium,
15 - 1 consistent with larger spinorbit coupling in tantalum, which
increases the intensity of the transition by more efficient mixing
14 b ] of singlet and triplet states compared to niobium. Radiative

rate constants vary within error as the alkyl group or Lewis
13} ] base ligand is changéd.
These observations suggest that profound insight into the

In(k *1s)

12| 3 . electronic structure of transition metal complexes containing
. multiply bonded ligands is available through electronic spec-
b 2 v troscopy, similar to observations made earlier in other high
oxidation state (8lor ?) complexes containing multiply bonded
10 ) ' e ligands?1820-23 A key observation is that the rate of nonra-
14000 15000 16000 17000 18000 19000

diative decayapparentlyfollows energy gap law considerations.
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The rate constant for nonradiative decay is proportional to or compoundsl—8 (4 pages). Ordering information is given on any
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Figure 1. Energy Gap Law plot for compounds-5.
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—)/EO (19) The observation of thé(nby < mwmy) transition allows the
knr(x ex (1) calculation ofk, from the absorption band profile. Following Mey&k; is
th given by
€ 7,
B E k = (3.05x 10’9);72[5}’3UIM
Y= |n ha) -1 (2) Vmax
SM M wherey is the refractive index of the solvent,is the energy of emission,

. ) €max Vmax aNdAfg 12 are the extinction coefficient, energy, and full width
whereEy is the energy gap between the ground and excited at half-maximum of the absorption band. Thugcalcd) values ford, 5,

; ; ; ; _and7are 4x 105, 9 x 1(P, and 3x 1P s7L.
states,Sy is the Huang-Rhys factor (a dimensionless distor (20) Winkler, 3. R.: Gray, H. Binorg. Chem 1985 24, 346.

tional par.ameter),.anﬂwM is the medium frequency acceptor (21) Trammell, S.; Sullivan, B. P.; Hodges, L. M.; Harman, W. D.; Smith,
mode which contributes to excited state de®&y%17 In these S. R.; Thorp, H. Hinorg. Chem.1995 34, 2791.

systems nonradiative processes dominate excited state decay (?2)Flenna. 8, Wi Thompson, M. E.; Bocarsly, A. & Am. Chem.

(Table 1). Equation 1 predicjts an increasé&qjraskg decreases_. (23) Bocarsly, A. B.; Cameron, R. E.; Rubin, H.-D.; McDermott, G. A.:
The observed correlation (Figure 1) suggests that the dominantwolff, C. R.; Mayr, A. Inorg. Chem.1985 24, 3976.



